Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0296406, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165914

RESUMO

INTRODUCTION: Arboviral diseases, such as dengue, chikungunya, yellow fever, and Zika, are caused by viruses that are transmitted to humans through mosquito bites. However, the status of arbovirus vectors in eastern Ethiopia is unknown. The aim of this study was to investigate distribution, breeding habitat, bionomics and phylogenetic relationship of Aedes aegypti mosquito species in Somali Regional State, Eastern Ethiopia. METHODS: Entomological surveys were conducted in four sites including Jigjiga, Degehabur, Kebridehar and Godey in 2018 (October to December) to study the distribution of Ae. aegypti and with a follow-up collection in 2020 (July-December). In addition, an investigation into the seasonality and bionomics of Ae. aegypti was conducted in 2021 (January-April) in Kebridehar town. Adult mosquitoes were collected from indoor and outdoor locations using CDC light traps (LTs), pyrethrum spray collection (PSCs), and aspirators. Larvae and pupae were also collected from a total of 169 water-holding containers using a dipper between October and November 2020 (rainy season) in Kebridehar town. The species identification of wild caught and reared adults was conducted using a taxonomic key. In addition, species identification using mitochondrial and nuclear genes maximum likelihood-based phylogenetic analysis was performed. RESULTS: In the 2018 collection, Ae. aegypti was found in all study sites (Jigjiga, Degahabour, Kebridehar and Godey). In the 2020-2021 collection, a total of 470 (Female = 341, Male = 129) wild caught adult Ae. aegypti mosquitoes were collected, mostly during the rainy season with the highest frequency in November (n = 177) while the lowest abundance was in the dry season (n = 14) for both February and March. The majority of Ae. aegypt were caught using PSC (n = 365) followed by CDC LT (n = 102) and least were collected by aspirator from an animal shelter (n = 3). Aedes aegypti larval density was highest in tires (0.97 larvae per dip) followed by cemented cisterns (0.73 larvae per dip) and the Relative Breeding Index (RBI) was 0.87 and Container Index (CI) was 0.56. Genetic analysis of ITS2 and COI revealed one and 18 haplotypes, respectively and phylogenetic analysis confirmed species identification. The 2022 collection revealed no Ae. aegpti, but two previously uncharacterized species to that region. Phylogenetic analysis of these two species revealed their identities as Ae. hirsutus and Culiseta longiareolata. CONCLUSION: Data from our study indicate that, Ae. aegypti is present both during the wet and dry seasons due to the availability of breeding habitats, including water containers like cemented cisterns, tires, barrels, and plastic containers. This study emphasizes the necessity of establishing a national entomological surveillance program for Aedes in Somali region.


Assuntos
Aedes , Dengue , Infecção por Zika virus , Zika virus , Masculino , Feminino , Humanos , Animais , Adulto , Aedes/genética , Filogenia , Etiópia , Funções Verossimilhança , Somália , Mosquitos Vetores/genética , Melhoramento Vegetal , Ecossistema , Ecologia , Água , Larva/genética
3.
Malar J ; 20(1): 263, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107943

RESUMO

BACKGROUND: Anopheles stephensi, an invasive malaria vector, was first detected in Africa nearly 10 years ago. After the initial finding in Djibouti, it has subsequently been found in Ethiopia, Sudan and Somalia. To better inform policies and vector control decisions, it is important to understand the distribution, bionomics, insecticide susceptibility, and transmission potential of An. stephensi. These aspects were studied as part of routine entomological monitoring in Ethiopia between 2018 and 2020. METHODS: Adult mosquitoes were collected using human landing collections, pyrethrum spray catches, CDC light traps, animal-baited tent traps, resting boxes, and manual aspiration from animal shelters. Larvae were collected using hand-held dippers. The source of blood in blood-fed mosquitoes and the presence of sporozoites was assessed through enzyme-linked immunosorbent assays (ELISA). Insecticide susceptibility was assessed for pyrethroids, organophosphates and carbamates. RESULTS: Adult An. stephensi were collected with aspiration, black resting boxes, and animal-baited traps collecting the highest numbers of mosquitoes. Although sampling efforts were geographically widespread, An. stephensi larvae were collected in urban and rural sites in eastern Ethiopia, but An. stephensi larvae were not found in western Ethiopian sites. Blood-meal analysis revealed a high proportion of blood meals that were taken from goats, and only a small proportion from humans. Plasmodium vivax was detected in wild-collected An. stephensi. High levels of insecticide resistance were detected to pyrethroids, carbamates and organophosphates. Pre-exposure to piperonyl butoxide increased susceptibility to pyrethroids. Larvae were found to be susceptible to temephos. CONCLUSIONS: Understanding the bionomics, insecticide susceptibility and distribution of An. stephensi will improve the quality of a national response in Ethiopia and provide additional information on populations of this invasive species in Africa. Further work is needed to understand the role that An. stephensi will have in Plasmodium transmission and malaria case incidence. While additional data are being collected, national programmes can use the available data to formulate and operationalize national strategies against the threat of An. stephensi.


Assuntos
Distribuição Animal , Anopheles/fisiologia , Resistência a Inseticidas , Traços de História de Vida , Animais , Anopheles/crescimento & desenvolvimento , Etiópia , Inseticidas/farmacologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Malária/transmissão
4.
Parasit Vectors ; 12(1): 209, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31060585

RESUMO

BACKGROUND: Visceral leishmaniasis (VL), a vector-borne disease caused by species of the L.donovani complex, has (re)-emerged in Ethiopia during the last two decades and is currently of increasing public health concern. However, very little is known about VL epidemiology in the Somali Region of Ethiopia. The aim of this study was to provide detailed epidemiological information on seroprevalence, associated factors and incriminated vectors of VL in Shebelle Zone and Ethiopian Somali Region in general. METHODS: A cross-sectional epidemiological study was conducted between March and May 2016 in Gode and Adadle districts of Shebelle Zone, Ethiopian Somali Region. Two-stage semi-random sampling was applied for selecting study participants for the field survey. The study included structured questionnaire interviews, serological assays (rK39-immunochromatographic test), ELISA and entomological surveys. RESULTS: From a total of 361 participants, 57 (15.8%) were seropositive for VL including 46 (12.7%) rK39 positive and 11 (3.0%) positive by both rK39 and ELISA. VL seroprevalence was higher (P < 0.001) in Adadle (31.1%) compared to Gode (12.7%) district. The VL seroprevalence rate was higher in females than in males [rK39 (17.2 vs 14.0%) and ELISA (3.4 vs 2.5%)]. Children under the 15 years of age were the most highly affected group [rK39 (20.4%) and ELISA (4.4%)]. Increased VL risk was associated with presence of termite hills, study district, outdoor sleeping, Acacia trees and domestic animals [odds ratio (95% confidence interval): 12.58 (5.911-26.763), 5.40 (2.90-10.07), 5.31 (2.283-12.364), 2.37 (1.1190-4.728) and 0.199 (0.097-0.410), respectively]. The entomological survey identified 74 Phlebotomus [P. (Larroussius) orientalis (52/74), P. (Anaphlebotomus) rodhaini (14/74), P. (Paraphlebotomus) sergenti (8/74)] and 11 Sergentomyia sand flies. The average frequency of P. orientalis (3.06 ± 0.66) collected by all traps per night was higher than that of other species. The average frequency of total and specific (P. orientalis) female sand flies was higher in Adadle (1.89 ± 0.423 vs 1.11 ± 0.309) than in Gode (0.62 ± 0.324 vs 0.38 ± 0.183) district. The highest mean numbers of total (8 ± 1.5) and P. orientalis (6 ± 0.913) sand flies were collected in termite hills. CONCLUSIONS: The present findings revealed potential new VL-transmission foci in the study districts. Therefore, the need for parasitological and molecular characterization of the parasite in humans and vector sand flies is of paramount importance to confirm transmission.


Assuntos
Leishmania donovani , Leishmaniose Visceral/epidemiologia , Acacia , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Etiópia/epidemiologia , Feminino , Humanos , Lactente , Recém-Nascido , Isópteros , Leishmania donovani/isolamento & purificação , Leishmaniose Visceral/transmissão , Masculino , Psychodidae/parasitologia , Fatores de Risco , Estudos Soroepidemiológicos , Condições Sociais , Adulto Jovem
5.
Malar J ; 16(1): 307, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28764723

RESUMO

BACKGROUND: Ethiopia is endowed with abundant medicinal plant resources and traditional medicinal practices. However, available research evidence on indigenous anti-malarial plants is highly fragmented in the country. The present systematic review attempted to explore, synthesize and compile ethno-medicinal research evidence on anti-malarial medicinal plants in Ethiopia. METHODS: A systematic web search analysis and review was conducted on research literature pertaining to medicinal plants used for traditional malaria treatment in Ethiopia. Data were collected from a total of 82 Ethiopian studies meeting specific inclusion criteria including published research articles and unpublished thesis reports. SPSS Version 16 was used to summarize relevant ethno-botanical/medicinal information using descriptive statistics, frequency, percentage, tables, and bar graphs. RESULTS: A total of 200 different plant species (from 71 families) used for traditional malaria treatment were identified in different parts of Ethiopia. Distribution and usage pattern of anti-malarial plants showed substantial variability across different geographic settings. A higher diversity of anti-malarial plants was reported from western and southwestern parts of the country. Analysis of ethno-medicinal recipes indicated that mainly fresh leaves were used for preparation of remedies. Decoction, concoction and eating/chewing were found to be the most frequently employed herbal remedy preparation methods. Notably, anti-malarial herbal remedies were administered by oral route. Information on potential side effects of anti-malarial herbal preparations was patchy. However, some anti-malarial plants were reported to have potentially serious side effects using different local antidotes and some specific contra-indications. CONCLUSION: The study highlighted a rich diversity of indigenous anti-malarial medicinal plants with equally divergent herbal remedy preparation and use pattern in Ethiopia. Baseline information gaps were observed in key geographic settings. Likewise, herbal remedy toxicity risks and countermeasures generally entailed more exhaustive investigation. Experimental research and advanced chemical analysis are also required to validate the therapeutic potential of anti-malarial compounds from promising plant species.


Assuntos
Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Medicina Tradicional Africana/estatística & dados numéricos , Fitoterapia/estatística & dados numéricos , Preparações de Plantas/uso terapêutico , Plantas Medicinais/química , Etiópia , Etnobotânica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...